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Access Control Anti-Patterns
• Hard-coded role checks in application code
• Lack of centralized access control logic
• Untrusted data driving access control 

decisions
• Access control that is “open by default”
• Lack of addressing horizontal access 

control in a standardized way (if at all)
• Access control logic that needs to be 

manually added to every endpoint in code
• Access Control that is “sticky” per session
• Access Control that requires per-user policy
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What is Access Control?
• Authorization is the process where a system 

determines
if a specific user has access to a resource

• Permission: Represents app behavior only

• Entitlement: What a user is actually allowed to do

• Principle/User: Who/what you are entitling

• Implicit Role:  Named permission, user associated
•  if (user.isRole(“Manager”));

• Explicit Role: Named permission, resource 
associated

• if (user.isAuthorized(“report:view:3324”);
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Attacks on Access Control
• Vertical Access Control Attacks
• A standard user accessing administration functionality
• Horizontal Access Control Attacks
• Same role, but accessing another user's private data
• Business Logic Access Control Attacks
• Abuse of one or more linked activities that collectively realize a 

business objective
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Access Controls Impact
• Loss of accountability
• Attackers maliciously execute actions as other users
• Attackers maliciously execute higher level actions
• Disclosure of confidential data
• Compromising admin-level accounts often results in access to 

user’s confidential data
• Data tampering
• Privilege levels do not distinguish users who can only view data 

and users permitted to modify data
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Hard-Coded Roles
void editProfile(User u, EditUser eu) {
  if (u.isManager()) {
     editUser(eu)
  }
}

• How do you change the policy of this code?
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Hard-Coded Roles

if ((user.isManager() ||
user.isAdministrator() ||
user.isEditor()) &&

    user.id() != 1132)) 
{
    //execute action
}
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Hard-Coded Roles
• Makes “proving” the policy of an application difficult 

for audit or Q/A purposes
• Any time access control policy needs to change, 

new code need to be pushed
• RBAC is often not granular enough 
• Fragile, easy to make mistakes
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Order- Specific Operations
• Imagine the following parameters
• http://example.com/buy?action=chooseDataPackage
• http://example.com/buy?action=customizePackage
• http://example.com/buy?action=makePayment
• http://example.com/buy?action=downloadData

• Can an attacker control the sequence?
• Can an attacker abuse this with concurrency?
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Rarely Depend on Untrusted Data
• Never trust request data for access control 

decisions

• Never make access control decisions in JavaScript

• Never make authorization decisions based solely 
on: 

hidden fields

cookie values
form parameters
URL parameters

anything else from the request

• Never depend on the order of values sent from the 
client
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Best Practice: Centralized AuthZ

• Define a centralized access controller
• ACLService.isAuthorized(PERMISSION_CONSTANT)
• ACLService.assertAuthorized(PERMISSION_CONSTANT)

• Access control decisions go through these simple 
API’s

• Centralized logic to drive policy behavior and 
persistence

• May contain data-driven access control policy 
information
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Best Practice: Code to the Activity

if (AC.hasAccess(“article:edit:12”))
{

 //execute activity
}
• Code it once, never needs to change again

• Implies policy is centralized in some way

• Implies policy is persisted in some way

• Requires more design/work up front to get right
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Using a Centralized Access Controller
In Presentation Layer

if (isAuthorized(Permission.VIEW_LOG_PANEL))
{

<h2>Here are the logs</h2>
<%=getLogs();%/>

}
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Using a Centralized Access Controller
In Controller

try (assertAuthorized(Permission.DELETE_USER))
{

deleteUser();
} catch (Exception e) {
     //SOUND THE ALARM
}
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SQL Integrated Access Control
Example Feature

http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select * from messages where messageid = 2356342 AND 

messages.message_owner = <userid_from_session>
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Data Contextual Access Control
Data Contextual / Horizontal Access Control API 
examples:

ACLService.isAuthorized(“car:view:321”)
ACLService.assertAuthorized(“car:edit:321”)

Long form:
Is Authorized(user, Perm.EDIT_CAR, Car.class, 14)

Check if the user has the right role in the context of a 
specific object Protecting data a the lowest level!
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Apache SHIRO
http://shiro.apache.org/ 

• Apache Shiro is a powerful and easy to use 
Java security framework.

• Offers developers an intuitive yet 
comprehensive solution to authentication, 
authorization, cryptography, and session 
management.

• Built on sound interface-driven design and OO 
principles.

• Enables custom behavior.
• Sensible and secure defaults for everything.

http://shiro.apache.org/
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Solving Real World Access Control Problems 
with the Apache Shiro

The ProblemThe Problem

Web Application needs secure access control mechanismWeb Application needs secure access control mechanism

The SolutionThe Solution

if ( currentUser.isPerm itted( "lightsaber:w ield" ) ) {
    log.info("You m ay use a lightsaber ring.  Use it w isely.");
} else {
    log.info("Sorry, lightsaber rings are for schw artz m asters only.");
}

if ( currentUser.isPerm itted( "lightsaber:w ield" ) ) {
    log.info("You m ay use a lightsaber ring.  Use it w isely.");
} else {
    log.info("Sorry, lightsaber rings are for schw artz m asters only.");
}
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Solving Real World Access Control Problems 
with the Apache Shiro

The ProblemThe Problem

Web Application needs to secure access to a specific objectWeb Application needs to secure access to a specific object

The SolutionThe Solution

if ( currentUser.isPerm itted( "w innebago:drive:" +  w in_id ) ) {
    log.info("You are perm itted to 'drive' the 'w innebago' w ith license plate (id) 'eagle5'. Here 
are the keys - have fun!");
} else {
    log.info("Sorry, you aren't allow ed to drive the 'eagle5' w innebago!");
}

if ( currentUser.isPerm itted( "w innebago:drive:" +  w in_id ) ) {
    log.info("You are perm itted to 'drive' the 'w innebago' w ith license plate (id) 'eagle5'. Here 
are the keys - have fun!");
} else {
    log.info("Sorry, you aren't allow ed to drive the 'eagle5' w innebago!");
}
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