Web App Access
Control Design

Access Control Anti-Patterns

* Hard-coded role checks in application code
* Lack of centralized access control logic

* Untrusted data driving access control
decisions

* Access control that is “open by default”

* Lack of addressing horizontal access
control in a standardized way (if at all)

* Access control logic that needs to be
manually added to every endpoint in code

* Access Control that is “sticky” per session

What is Access Control?

* Authorization is the process where a system
determines
If a specific user has access to a resource

* Permission: Represents app behavior only
* Entitlement: What a user is actually allowed to do
* Principle/User: Who/what you are entitling

* Implicit Role: Named permission, user associated
iIf (user.isRole(“Manager”));

* Explicit Role: Named permission, resource

- associated—————

Attacks on Access Control

* Vertical Access Control Attacks

* A standard user accessing administration functionality
* Horizontal Access Control Attacks

 Same role, but accessing another user's private data

* Business Logic Access Control Attacks

* Abuse of one or more linked activities that collectively realize a
business objective

Access Controls Impact

* Loss of accountability
« Attackers maliciously execute actions as other users
* Attackers maliciously execute higher level actions

* Disclosure of confidential data
« Compromising admin-level accounts often results in access to
user’s confidential data

* Data tampering
* Privilege levels do not distinguish users who can only view data
and users permitted to modify data

Hard-Coded Roles

vold editProfile (User u, EditUser eu) {

1f (u.isManager()) {

editUser (eu)

* How do you change the policy of this code?

Hard-Coded Roles

1f ((user.isManager () ||
user.isAdministrator () ||
user.1isEditor()) &&
user.1d () != 1132))

//execute action

Hard-Coded Roles

 Makes “proving” the policy of an application difficult
for audit or Q/A purposes

* Any time access control policy needs to change,
new code need to be pushed

 RBAC is often not granular enough

* Fragile, easy to make mistakes

Order- Specific Operations

Imagine the following parameters
http://example.com/buy?action=chooseDataPackage
http://example.com/buy?action=customizePackage
http://example.com/buy?action=makePayment
http://example.com/buy?action=downloadData

Can an attacker control the sequence?
Can an attacker abuse this with concurrency?

Rarely Depend on Untrusted Data

* Never trust request data for access control
decisions

* Never make access control decisions in JavaScript

* Never make authorization decisions based solely

on.
hidden fields

cookie values
form parameters
URL parameters
anything else from the request

Best Practice: Centralized AuthZ

* Define a centralized access controller
* ACLService.isAuthorized(PERMISSION CONSTANT)
* ACLService.assertAuthorized(PERMISSION_CONSTANT)

* Access control decisions go through these simple
API's

* Centralized logic to drive policy behavior and
persistence

Best Practice: Code to the Activity

1f (AC.hasAccess (“Yarticle:edit:12"))
{

//execute activity

}
* Code it once, never needs to change again

* Implies policy is centralized in some way
* Implies policy is persisted in some way
* Requires more design/work up front to get right

Using a Centralized Access Controller

In Presentation Layer

1f (isAuthorized (Permission.VIEW LOG PANEL))

{
<h2>Here are the logs</h2>

<%=getLogs () ;%/>

Using a Centralized Access Controller

In Controller

try (assertAuthorized(Permission.DELETE USER))
{
deleteUser () ;
} catch (Exception e) {
//SOUND THE ALARM

SQL Integrated Access Control

Example Feature
http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering

select * from messages where messagelid = 2356342

Ensure the owner is referenced in the query!

select * from messages where messageid = 2356342 AND
messages.message owner = <userid from session>

Data Contextual Access Control

Data Contextual / Horizontal Access Control API
examples:

ACLService.isAuthorized (Ycar:view:321")
ACLService.assertAuthorized (Ycar:edit:321")

Long form:
Is Authorized(user, Perm.EDIT CAR, Car.class, 14)

Check if the user has the right role in the context of a
specific object Protecting data a the lowest level!

Apache SHIRO

http://shiro.apache.org/

* Apache Shiro is a powerful and easy to use
Java security framework.

* Offers developers an intuitive yet
comprehensive solution to authentication,
authorization, cryptography, and session
management.

* Built on sound interface-driven desigh and OO
principles.

* Enables custom behavior.

 Sensible and secure defaults for everzthin%.

http://shiro.apache.org/

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs secure access control mechanism

The Solution

if (currentU ser.isPem itted ("Ughtsaber:w ieWd")) {

lbg.info("You m ay use a lghtsaberring. Use itw isely.");
} else {

lbg.info("Sorry, ightsaberrings are forschwartz m asters only.");
}

Solving Real World Access Control Problems
with the Apache Shiro

The Problem

Web Application needs to secure access to a specific object

The Solution

if (currentl ser.isPem itted ("w innebago:drive:"+ win id)) {
lbg.nfo("You are pem itted to drive'the Winnebago'w ith license plate (id) eagle5'.Here
are the keys -have fun!");
} else {
lbg.info("Sorry,you aren‘talowed to drive the 'eagle5'w innebago!");
}

	Web App Access Control Design
	Access Control Anti-Patterns
	What is Access Control?
	Attacks on Access Control
	Access Controls Impact
	Hard-Coded Roles
	Hard-Coded Roles
	Hard-Coded Roles
	Order- Specific Operations
	Rarely Depend on Untrusted Data
	Best Practice: Centralized AuthZ
	Best Practice: Code to the Activity
	Using a Centralized Access Controller
	Using a Centralized Access Controller
	SQL Integrated Access Control
	Data Contextual Access Control
	Apache SHIRO
	Διαφάνεια 18
	Διαφάνεια 19

