
The OWASP Foundation
http://www.owasp.org

Web App Access
Control Design



The OWASP Foundation
http://www.owasp.org

Access Control Anti-Patterns
• Hard-coded role checks in application code
• Lack of centralized access control logic
• Untrusted data driving access control 

decisions
• Access control that is “open by default”
• Lack of addressing horizontal access 

control in a standardized way (if at all)
• Access control logic that needs to be 

manually added to every endpoint in code
• Access Control that is “sticky” per session
• Access Control that requires per-user policy



The OWASP Foundation
http://www.owasp.org

What is Access Control?
• Authorization is the process where a system 

determines
if a specific user has access to a resource

• Permission: Represents app behavior only

• Entitlement: What a user is actually allowed to do

• Principle/User: Who/what you are entitling

• Implicit Role:  Named permission, user associated
•  if (user.isRole(“Manager”));

• Explicit Role: Named permission, resource 
associated

• if (user.isAuthorized(“report:view:3324”);



The OWASP Foundation
http://www.owasp.org

Attacks on Access Control
• Vertical Access Control Attacks
• A standard user accessing administration functionality
• Horizontal Access Control Attacks
• Same role, but accessing another user's private data
• Business Logic Access Control Attacks
• Abuse of one or more linked activities that collectively realize a 

business objective



The OWASP Foundation
http://www.owasp.org

Access Controls Impact
• Loss of accountability
• Attackers maliciously execute actions as other users
• Attackers maliciously execute higher level actions
• Disclosure of confidential data
• Compromising admin-level accounts often results in access to 

user’s confidential data
• Data tampering
• Privilege levels do not distinguish users who can only view data 

and users permitted to modify data



The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
void editProfile(User u, EditUser eu) {
  if (u.isManager()) {
     editUser(eu)
  }
}

• How do you change the policy of this code?



The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles

if ((user.isManager() ||
user.isAdministrator() ||
user.isEditor()) &&

    user.id() != 1132)) 
{
    //execute action
}



The OWASP Foundation
http://www.owasp.org

Hard-Coded Roles
• Makes “proving” the policy of an application difficult 

for audit or Q/A purposes
• Any time access control policy needs to change, 

new code need to be pushed
• RBAC is often not granular enough 
• Fragile, easy to make mistakes



The OWASP Foundation
http://www.owasp.org

Order- Specific Operations
• Imagine the following parameters
• http://example.com/buy?action=chooseDataPackage
• http://example.com/buy?action=customizePackage
• http://example.com/buy?action=makePayment
• http://example.com/buy?action=downloadData

• Can an attacker control the sequence?
• Can an attacker abuse this with concurrency?



The OWASP Foundation
http://www.owasp.org

Rarely Depend on Untrusted Data
• Never trust request data for access control 

decisions

• Never make access control decisions in JavaScript

• Never make authorization decisions based solely 
on: 

hidden fields

cookie values
form parameters
URL parameters

anything else from the request

• Never depend on the order of values sent from the 
client



The OWASP Foundation
http://www.owasp.org

Best Practice: Centralized AuthZ

• Define a centralized access controller
• ACLService.isAuthorized(PERMISSION_CONSTANT)
• ACLService.assertAuthorized(PERMISSION_CONSTANT)

• Access control decisions go through these simple 
API’s

• Centralized logic to drive policy behavior and 
persistence

• May contain data-driven access control policy 
information



The OWASP Foundation
http://www.owasp.org

Best Practice: Code to the Activity

if (AC.hasAccess(“article:edit:12”))
{

 //execute activity
}
• Code it once, never needs to change again

• Implies policy is centralized in some way

• Implies policy is persisted in some way

• Requires more design/work up front to get right



The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Presentation Layer

if (isAuthorized(Permission.VIEW_LOG_PANEL))
{

<h2>Here are the logs</h2>
<%=getLogs();%/>

}



The OWASP Foundation
http://www.owasp.org

Using a Centralized Access Controller
In Controller

try (assertAuthorized(Permission.DELETE_USER))
{

deleteUser();
} catch (Exception e) {
     //SOUND THE ALARM
}



The OWASP Foundation
http://www.owasp.org

SQL Integrated Access Control
Example Feature

http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select * from messages where messageid = 2356342 AND 

messages.message_owner = <userid_from_session>



The OWASP Foundation
http://www.owasp.org

Data Contextual Access Control
Data Contextual / Horizontal Access Control API 
examples:

ACLService.isAuthorized(“car:view:321”)
ACLService.assertAuthorized(“car:edit:321”)

Long form:
Is Authorized(user, Perm.EDIT_CAR, Car.class, 14)

Check if the user has the right role in the context of a 
specific object Protecting data a the lowest level!



The OWASP Foundation
http://www.owasp.org

Apache SHIRO
http://shiro.apache.org/ 

• Apache Shiro is a powerful and easy to use 
Java security framework.

• Offers developers an intuitive yet 
comprehensive solution to authentication, 
authorization, cryptography, and session 
management.

• Built on sound interface-driven design and OO 
principles.

• Enables custom behavior.
• Sensible and secure defaults for everything.

http://shiro.apache.org/


The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems 
with the Apache Shiro

The ProblemThe Problem

Web Application needs secure access control mechanismWeb Application needs secure access control mechanism

The SolutionThe Solution

if ( currentUser.isPerm itted( "lightsaber:w ield" ) ) {
    log.info("You m ay use a lightsaber ring.  Use it w isely.");
} else {
    log.info("Sorry, lightsaber rings are for schw artz m asters only.");
}

if ( currentUser.isPerm itted( "lightsaber:w ield" ) ) {
    log.info("You m ay use a lightsaber ring.  Use it w isely.");
} else {
    log.info("Sorry, lightsaber rings are for schw artz m asters only.");
}



The OWASP Foundation
http://www.owasp.org

Solving Real World Access Control Problems 
with the Apache Shiro

The ProblemThe Problem

Web Application needs to secure access to a specific objectWeb Application needs to secure access to a specific object

The SolutionThe Solution

if ( currentUser.isPerm itted( "w innebago:drive:" +  w in_id ) ) {
    log.info("You are perm itted to 'drive' the 'w innebago' w ith license plate (id) 'eagle5'. Here 
are the keys - have fun!");
} else {
    log.info("Sorry, you aren't allow ed to drive the 'eagle5' w innebago!");
}

if ( currentUser.isPerm itted( "w innebago:drive:" +  w in_id ) ) {
    log.info("You are perm itted to 'drive' the 'w innebago' w ith license plate (id) 'eagle5'. Here 
are the keys - have fun!");
} else {
    log.info("Sorry, you aren't allow ed to drive the 'eagle5' w innebago!");
}


	Web App Access Control Design
	Access Control Anti-Patterns
	What is Access Control?
	Attacks on Access Control
	Access Controls Impact
	Hard-Coded Roles
	Hard-Coded Roles
	Hard-Coded Roles
	Order- Specific Operations
	Rarely Depend on Untrusted Data
	Best Practice: Centralized AuthZ
	Best Practice: Code to the Activity
	Using a Centralized Access Controller
	Using a Centralized Access Controller
	SQL Integrated Access Control
	Data Contextual Access Control
	Apache SHIRO
	Διαφάνεια 18
	Διαφάνεια 19

